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Abstract: The effectiveness of Air entraining agent (AEA) in concrete under low air pressure in the 

plateau area decreased. A type of new AEA, named MRE was synthesized to increase bubbles' stability 

in fresh concrete under low air pressure. The performance of MRE solution and concrete with MRE 

were tested under 60 kPa and 100 kPa compared with commercially gemini AEA (DCC). The test results 

showed that the foam volume of MRE and DCC solution under 60 kPa was reduced by 3% and 9% than 

under 100 kPa. The bubble liquid film strength of MRE is 63% higher than that of DCC. For concrete 

with MRE and DCC under 60 kPa, the air content was 2% and 16% lower, the relative dynamic modulus 

of concrete reduced by 6% and 15%, and the bubble spacing factor under 60 kPa increased by 17% and 

39% respectively compared with that under 100 kPa. MRE can increase the freeze-thaw resistance of 

concrete under low air pressure without affecting concrete strength and is suitable for high altitude 

concrete. 
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1. Introduction  
Concrete is the most commonly used building material in the world, in which chemical admixtures 

[1-2] or mineral admixtures [3-5] are often added to improve its performance. Air entertaining agent 

(AEA) is one of chemical admixtures and is often used in concrete preparation [6]. It introduces many 

micrometer-sized bubbles in concrete [7] to improve fresh concrete's workability and the freeze-thaw 

resistance of hardened concrete [8-9]. The mainstream AEAs in applications are rosin, saponin, 

alkylbenzene sulfonate, and fatty alcohol sulfonate [10]. A practical problem of AEA is that its 

performance degenerates in a high-altitude area under low air pressure. The air content of concrete is 

reduced by 28 to 52%, and the bubble spacing factor of concrete increases significantly [11-12]. Further 

studies have shown that the performance of the AEAs with high bubble stability is less affected by the 

low air pressure [13]. So, an AEA with good bubble stability might be an excellent solution to this 

problem. 

In recent years, gemini surfactants started to be used as a new type of AEA in concrete [14-15]. The 

gemini surfactants have higher surface activity, foamability, foam stability, and air-entraining per-

formance than the corresponding single-chained surfactants [16-17]. It can be regarded as a dipolymer 

of two single-chain surfactants connected by a connecting group [18]. The distance between ionic groups 

(sulfonate, sulfate, and phosphate groups) due to electrostatic repulsion is drawn closer because of the 

connecting group's presence. The surfactant molecules are arranged closer at the gas-liquid interface, the 

surface tension of the solution decreases, and the formation bubbles' stability is improved [19-20]. These 

characteristics make gemini surfactants as ideal AEA for concrete under low atmospheric pressure. 

Another potential solution to this problem is the rosin surfactant. Because of the ternary phenanthrene 

rings inside, the rosin surfactant's molecular structure is rigid, and therefore, good bubble stability would 

be obtained [21-22]. Simultaneously, the rosin structure contains unsaturated double bonds and carboxyl 

groups. So they are prone to polymerization, esterification, and other reactions [23-24].  
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However, small solubility of rosin in water limits the transportation and usage of rosin AEA. Maleic 

anhydride is used to modify the rosin and synthesize maleic rosin [25]: Two maleic anhydrides are added 

to maleic rosin's molecular structure to improve its solubility. Therefore, a maleic rosin-based gemini 

AEA may be the right candidate for enhancing the bubbles' stability inside the concrete and reducing the 

effect of low air pressure on the AEA.  

In this work, a new type of gemini surfactants (Tetramethylethylenediamine-dimaleic rosin gemini 

surfactant, hereafter abbreviated as MRE) was synthesized. The surface tension and foam volume of this 

surfactant were tested, the air content, strength, and freeze-thaw resistance of concrete with the gemini 

surfactant were tested. The results showed that MRE had excellent bubble stability and was suitable as 

an AEA for concrete under low atmospheric pressure. 

 

2. Materials and methods  
2.1. Materials  

Maleic rosin (MS) is an industrial product. Epichlorohydrin, tetrabutylammonium bromide, 

anhydrous ethanol, tetramethylethylenediamine are all analytical grade chemical reagents. DCC is the 

commercially available gemini surfactants for comparison with MRE in this study, and its synthesis 

method is shown in [26]. The molecular structure of DCC is shown in Figure 1. Portland cement Type 

I, corresponding to EN 197, was used as the cementitious material. River sand with fineness modulus 

2.8(corresponding to GBT 14684 [27]) was used as the fine aggregate. Limestone gravel was used as 

the coarse aggregate(meeting the requirements of national standard GBT 14685 [28]), whose mass ratio 

of particles with size 5-10mm to particles with size 10-20mm was 4:6. Tap water (Chloride ion content 

<500mg/L, sulfate content <600mg/L, meeting the requirements of standard JGJ 63 [29]) was used as 

the mixing water of concrete. A polycarboxylate superplasticizer with a water reduction rate of 32% and 

a solid content of 20% was used.  

                    

 
Figure 1. Chemical structure of DCC [26] 

 

The concrete mix proportion for the test is shown in Table 1. The control concrete J had a 200mm 

slump at 100 kPa and air content of 4.2%, which was mainly induced by polycarboxylate super-

plasticizer. The air content of the two kinds of test concrete A and B at 100 kPa was adjusted to about 

7% using MRE and DCC, respectively. 

 

Table 1. Concrete mix proportion 

Concrete 
Cement 

(kg·m-3) 

Fine aggregate 

(kg·m-3) 

Coarse aggregate 

(kg·m-3) 

Water 

(kg·m-3) 

Superplasticizer 

(kg·m-3) 
Type and dosage of AEA (wt‰) 

J 

420 745 1117 168 3.14 

0 

A MRE  0.10 

B DCC  0.05 

 

2.2. Synthesis of maleic rosin gemini surfactant  

The method used in the air-entraining agent MRE synthesis is an optimized method from the method 

in [30]. In Literature 30, rosin acid, epichlorohydrin and tetramethyl ethylenediamine were used to 

synthesize rosin-based gemini surfactants. However, the solubility of rosin was small, and the solubility 
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of synthetic surfactants was small, so it was not suitable for use as an air-entraining agent. Therefore, 

maleic rosin was used to instead of rosin for reaction to improve the solubility of the synthesized product. 

100 g maleic rosin, 2 g tetrabutylammonium bromide, and 30 g epichlorohydrin were added to a flask. 

After 4 h of stirring reflux reaction at 90℃, the excess epichlorohydrin was distilled out by vacuum 

distillation to obtain the intermediate product of light brown liquid. The intermediate product was 

dissolved in anhydrous ethanol, and 6 g tetramethyl ethylenediamine was added. The magnetic stirring 

reflux reaction was carried out at 85℃ for 20 h. The solvent was steamed out with unreacted tetramethyl 

ethylenediamine, and then a dark brown liquid MRE was obtained. 

The molecular structure of MRE is shown in Figure 2. 

 

 
Figure 2. Chemical structure of MRE 

 

2.3. Testing methods  

2.3.1. Surface tension test 

The surface tension test refered to EN 14370. The surface tension was tested using the automatic 

interface tension meter JZ-200A under normal pressure in Beijing. The surface tension of the AEA 

solution was continuously tested at the temperature was 20 ± 3°C. The surface tension of the solution 

was continuously measured, and the test was terminated when the standard deviation of the last five 

measurement data was less than 0.5 mN/m. The average of the last five measurements is the surface 

tension of the AEA solution. 

 

2.3.2. Foam volume test 

A solution foam performance tester [31] (Figure 3) met the requirements of ASTM D3519-88 (2007) 

was used to test foam volume in Beijing (100 kPa) and Lhasa (60 kPa), respectively. The stirring rake 

sheared the solution at high speed (rotating speed 11000 r/min) through a mixer to shear the AEA 

solution to produce foam. The measuring cylinder's outer diameter, inner diameter, and height is 75 mm, 

65mm, and 250mm, respectively. The volume of the cylinder is about 829mL.  

150mL AEA solution with a mass concentration of 0.1% was stirred for 30 s firstly, then rest for 

5min before testing the remaining foam volume V. The foam volumes under 60 kPa and 100 kPa were 

recorded as V60 and V100, respectively. 

 

                         
 

 

Figure 3. Foam 

performance tester [31] 
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2.3.3. Gas-liquid interface membrane structure test 

The gas-liquid interface membrane structure of the air-entraining agent solution was tested with the 

KSV Minitrough membrane balance of Finland KSV Instrument Company. According to the literature 

[32], DCC and MRE were respectively formulated into 1 g·L-1 chloroform dilute solution. In the test, 

high-purity water was injected into the Langmuir tank. The surface tension was measured by the hanging 

piece method. A microsyringe was used to take 0.2 µL diluted chloroform solution of the air-entraining 

agent and spread it evenly on the water surface. After 20 min, the solvent was completely volatilized. 

Furthermore, a monomolecular film is formed on the air-water interface. The barrier was moved at a 

speed of 5 mm·min-1, the surface film was compressed from both sides, and the computer records the 

changes in the solution area and surface pressure π. According to the number of air-entraining agent 

molecules added, the area occupied by each molecule can be calculated, and the π-a curve can be drawn.  

The barrier is moved to the device's extreme position to obtain the extreme surface pressure of the 

air-entraining agent molecules. Extrapolate the steepest position in the π-a curve to obtain the limit 

single-molecule area. The limit surface pressure is used to characterize the strength of the air-entraining 

agent's monomolecular film at the gas-liquid interface. The molecular arrangement density on the bubble 

liquid film is inversely proportional to the limited single-molecule area. The limited single-molecule 

area is used to characterize the tightness of the molecular arrangement on the interface film.  

 

2.3.4. Performance testing of concrete 

The preparation of concrete was carried out in the laboratory in Beijing and Lhasa at the temperature 

of 20±3℃, relative humidity (RH) was 60%.  

 

(1) Air content of concrete 

The air content meter of concrete was calibrated by water to get the calibration curve in Beijing and 

Lhasa firstly. The well-mixed fresh concrete was poured into the air content meter bucket and vibrate. 

The air content of concrete was then tested and adjusted according to the calibration curve in Beijing 

and Lhasa. 

 

(2) Compressive strength 

Cubes of 100mm size were cast for compressive strength test. The well-mixed concretes were 

compacted by vibration. Then the concretes were covered with plastic sheets and kept for 24 h in 

laboratories (20±3℃, RH=60%). After 24 h, the concretes were demolded and transferred to a standard 

curing room. The concrete compressive strengths were tested at the age of 28 days in Beijing and Lhasa.  

 

(3) Rapid freeze-thaw test of concrete  

Rapid freeze-thaw test of concrete was carried out according to GBT 50082 [33]. Prismatic concrete 

specimens of 100mm ×100mm ×400mm were prepared for the rapid freeze-thaw test. The specimens 

were immersed in water at 20±2℃ for 4 days after curing for 24 days. The center temperature of the 

specimen was controlled at -18±2℃ to 5±2℃ during freezing and thawing. Each freeze-thaw cycle shall 

be completed within 2 h ~ 4 h. The relative dynamic modulus of concrete was tested after 200 freeze-

thaw cycles. 

 

(4) Pore structure of concrete  

The MIC-840-01 hardened concrete pore structure analyzer produced by Japan's MARUI Company 

was used to test the concrete pore structure. The size of the specimen was 100mm×100 mm×100mm. 

After 28 days of curing (20±2℃, RH=95%), the specimen was cut at the position 20mm from the end, 

which creates a new surface of 100 mm×100mm. The new surface was blackened with black ink and 

dried in a drying cabinet. The blackened surface was then filled with white calcium carbonate powder 

with a particle size of less than 6.5μm. The image of the surface was collected by a camera and be 

analyzed by the linear method (chord length 60 mm) to obtain the pore parameters such as the number 
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of pores, the bubble spacing factor, the average pore diameter and pore size distribution of hardened 

concrete. 

 

2.3.5. Synthetic product structure characterization 

The structure of the synthesized product was characterized by the German Bruker tensor 27 infrared 

spectrometer. The raw materials and final products were dried at 120℃ and ground into powder for 

infrared testing. 

 

3. Results and discussions 
3.1. Performance of MRE 

3.1.1. Surface tension 

The curve of surface tension with the concentration of MRE and DCC is shown in Figure 4. 

 

  
 

From Figure 4, it can be seen that the surface tension of the two solutions decreased rapidly with the 

increase of the concentration of the solution at the early stage. The surface tension of the solution turned 

out to be stable when the critical micelle concentration (CMC) was reached. The CMC of MRE and 

DCC were 0.09mmol/L and 0.25mmol/L, respectively. Meanwhile, the minimum surface tension 

corresponding to this concentration was 48.6 mN/m and 31.5 mN/m. It shows that amount of surfactant 

required to achieve the minimum surface tension of MRE was less than DCC, while the minimum 

surface tension of MRE solution was higher than DCC. 

 

3.1.2. Foam volume 

The foam volume of the tested solution under 100 kPa and 60 kPa is shown in Table 2. The foam 

volumes under 60 kPa and 100 kPa were recorded as V60 and V100, respectively. 

 

Table 2. Foam volume of the surfactant under 100 kPa and 60 kPa 

AEA 
Foam volume (mL) 

V60/V100 
V100 V60 

MRE 99 96 0.97 

DCC 69 63 0.91 

 

From Table 2, when compared with 100 kPa, the foam volume of the surfactants MRE and DCC 

under 60 kPa decreased by 3 and 9%, respectively. The foam stability of MRE was higher than DCC 

under low air pressure.  
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Figure 4. The relationship between 

surface tension and concentration 

of the AEAs 
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3.1.3. Gas-liquid interface membrane structure 

The surface tension and bubble stability of the air-entraining agent are related to bubble liquid film 

structure. The π-a isotherm curves of MRE and DCC are shown in Figure 5. 

 

 
Figure 5. The π-a isotherm curves of MRE and DCC 

 

It can be seen from Figure 5 that under the compression of the barrier, the surface pressure of MRE 

and DCC gradually increases. When the barrier is compressed to the limit, the surface pressures of MRE 

and DCC are 22.3 mN·m-1 and 13.7 mN·m-1, respectively, indicating that the MRE bubble liquid film's 

strength is significantly higher than that of DCC. The limit's single-molecule area can be obtained 

through extrapolating from the curve slope. The limiting single-molecule areas of MRE and DCC are 

0.97 nm2 and 0.86 nm2, respectively, indicating that DCC molecules are arranged more closely at the 

interface. The bubble liquid film strength of MRE is 63% higher than that of DCC, and the molecular 

arrangement density of MRE is 11% lower than that of DCC. 

 

3.2. Performance of concrete with MRE 

3.2.1. Air content 

The air content of concrete J, A, and B tested under 60 kPa (in Lhasa) and 100 kPa (in Beijing) is 

shown in Table 3. 

 

Table 3. Air content of concrete under 60 kPa and 100 kPa 

Concrete 
Air content (%) The reduction rate of air content under low air 

pressure compared to normal pressure (%) 100 kPa 60 kPa 

J 4.2 3.6 14 

A 7.1 6.8 2 

B 7.1 6.0 16 

 

As can be seen from Table 3, compared with 100 kPa, the air content of the three concretes J, A, and 

B decreased by 14%, 2%, and 16%, respectively. The air content of concrete under 60 kPa is generally 

lower than that of 100 kPa. Compared with concrete B with DCC, low air pressure affects less on 

concrete A with MRE air-entraining agent. 

 

3.2.2. Compressive strength 

The 28d compressive strength of concrete tested under 60 kPa and 100 kPa is shown in Figure 6. 
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Figure 6. Compressive strength of concrete 

under 60 kPa and 100 kPa 

 

Compared with 100 kPa, the strength of concrete J under 60 kPa decreased from 62.2 MPa to 56.3 

MPa; the strength of concrete A decreased from 55.3 MPa to 53.2 MPa, and the strength of concrete B 

decreased from 56.0 MPa to 51.8 MPa. The air content of the three concretes J, A, and B decreased by 

9.5, 3.8%, and 14.8%, respectively. The compressive strength of the concrete under low air pressure was 

reduced compared with normal pressure. 

 

3.2.3. Freeze-thaw resistance 

The rapid freeze-thaw test results of concrete prepared and cured under 60 kPa and 100 kPa 

respectively are shown in Table 4. 

 

Table 4. Relative dynamic modulus of concrete for  

200 freeze-thaw cycles 

Air pressure 
Relative dynamic elastic modulus of concrete (%) 

J A B 

100 kPa 59.6 88.2 87.1 

60 kPa 48.3 82.3 72.3 

 

From Table 4, the relative dynamic elastic modulus of concrete J, A, and B under 60 kPa after 200 

freeze-thaw cycles were 19%, 6%, and 15% lower than that of concrete at 100 kPa, respectively. That 

means the effect of increasing the freeze-thaw resistance of the AEA was reduced under 60 kPa and the 

decrease of freeze-thaw resistance of concrete with MRE was significantly smaller than that of other 

concrete.  

 

3.3. Discussions 

3.3.1. Molecular structure and characterization of MRE 

The infrared spectra of maleic rosin (MS) and MRE are shown in Figure 7. 
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Figure 7. Infrared spectra of MS and MRE 

 

In the MRE infrared spectrum, the 1695cm-1 peak disappeared, and the 1729cm-1 peak appeared, 

indicating that the carboxyl group in MS was converted to the ester group in MRE. Meanwhile, a new 

C-Cl stretching vibration peak appeared at 752cm-1, and an absorption peak of the C-N bond appeared 

at 990cm-1 in the infrared spectrum of the MRE, which indicated the formation of the MRE of the gemini 

structure. 

MRE contains a rosin phenanthrene ring, which makes the molecular more rigid. Compared with the 

DCC, the molecular structure of MRE is not easy to deform. As the data tested in 3.1.3, the larger rigid 

molecular arrangement density at the gas-liquid interface is relatively small, which leads to its un-

favorable effect on reducing the surface tension [16]. Hence, MRE is not effective in reducing the surface 

tension of the solution. However, the rigid groups of MRE can form a high elastic interfacial adsorption 

film, which improves bubbles stability of the solution [17] and makes MRE less affected by low air 

pressure. Similarly, we found that the foam volume of MRE solution and the air content of concrete 

mixed with MRE is reduced less than normal pressure under low air pressure. 

 

3.3.2. Pore structure of concrete with MRE 

The pore structure of concrete prepared in Lhasa (60 kPa) and Beijing (100 kPa) were tested to find 

the reasons for the change in the strength and freeze-thaw resistance of concrete under low air pressure. 

Figure 8 shows the pore structure under 100 kPa and 60 kPa, and the results of the average diameter of 

the pores and the bubble spacing factor are shown in Table 5. 

 

 
Figure 8. Image of the concrete surface 

 under 60 kPa and 100 kPa 
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Table 5. Parameters of the pore structure of hardened 

concrete under 60 kPa and 100 kPa 

Concrete 
Average pore diameter (μm) Bubble spacing factor(μm) 

100kPa    60kPa 100kPa    60kPa 

J 376.8    436.0 326.9    467.3 

A 232.3    263.1 203.9    249.2 

B 294.0    383.7 241.0    335.6 

 

The number of pores and the pore size distribution is shown in Figure 9. 

 
Figure 9. Pore size distribution of concrete under 

60 kPa and 100 kPa 

 

Compared with 100 kPa, the pore numbers of concrete J, A, and B decreased by 50 (from 74 to 24), 

5 (from 104 to 99), and 92 (from 148 to 56) under 60 kPa respectively. The number of pores in concrete 

J, A, and B under 60 kPa was 68%, 5%, and 62% lower than that under 100 kPa. The number of pores 

in hardened concrete under 60 kPa was reduced.  

The compressive strength of concrete at 28 days has strongly linked with the proportion of big pores 

(pore size range >1200 μm). The larger the proportion of big pores, the greater the compressive strength 

loss of concrete [34]. Figure 9 shows the number of big pores in concrete J, A, and B under 100 kPa and 

60 kPa are 7, 3, 6, 6, 2, and 3, respectively. After calculation, the proportion of big pores in concrete J 

and concrete B under 60 kPa increased by 3% and 7%, respectively. Table 4, the average diameter of 

pores in concrete J and B under 60 kPa was 16 and 31% higher than 100 kPa, respectively. So the 

strength of concrete J and concrete B under 60 kPa got worse when compared with that under 100 kPa, 

while the average diameter of pores in concrete A under 60 kPa increased by 13% compared with that 

under 100 kPa. The proportion of big pores in the concrete A under 60 kPa increases by 1%. Therefore, 

the strength of concrete A under 60 kPa decreases slightly. 

At the same time, it can be seen that the bubble spacing factor of concrete increased significantly 

under 60 kPa. The bubble spacing factor of concrete J, A, and B under 60 kPa increased by 43%, 17%, 

and 39% compared with that under 100 kPa, respectively. The bubble spacing factor’s increase resulted 

in a decrease of freeze-thaw resistance of concrete. Thus, under low air pressure, concrete A performed 

better than J and B in the increase of bubble spacing factor, which kept a better freeze-thaw resistance 

performance. 

 

4. Conclusions 
This paper introduces the synthesis and the performance of novel concrete air-entraining agent---- 

gemini surfactant MRE. The following conclusions are obtained: 

-the phenanthrene rings in the MRE led to low arrangement density of molecules at the interface, 
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MRE has a higher surface activity than the commercially AEA (DCC). The bubble liquid film strength 

of MRE is 63% higher than that of DCC. The stability of bubbles produced by MRE was better than 

DCC; 

-the air content of concrete with MRE under 60 kPa was only 2% lower than that under 100 kPa, and 

the bubble spacing factor was 17% higher than that under 100 kPa. After 200 freeze-thaw cycles, the 

relative dynamic modulus of concrete with MRE decreased less under 60 kPa than DCC. Concrete mixed 

with MRE had less deterioration in pore structure under low air pressure, and the strength and frost 

resistance of concrete were less affected under low air pressure. MRE was more suitable for concrete 

used in the low air pressure environment. 
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